Cluster-based segmentation of dual-echo ultra-short echo time images for PET/MR bone localization
نویسندگان
چکیده
BACKGROUND Magnetic resonance (MR)-based attenuation correction is a critical component of integrated positron emission tomography (PET)/MR scanners. It is generally achieved by segmenting MR images into tissue classes with known attenuation properties (e.g., bone, fat, soft tissue, lung, air). Ultra-short echo time (UTE) have been proposed in the past to locate bone tissue. In this study, tri-modality computed tomography data was used to develop an improved algorithm for the localization of bone in the head and neck. METHODS Twenty patients were scanned using a tri-modality setup. A UTE acquisition with 22-cm transaxial and 24-cm axial field of view was acquired, with a resolution of 1.5 × 1.5 × 2.0 mm(3). The sequence consisted of two echoes (30 μs, 1.7 ms) with a flip angle of 10° and 125-kHz bandwidth. The CT images of all patients were classified by thresholding and used to compute maps of the posterior probability of each tissue class, given a pair of UTE echo values. The Jaccard distance was used to compare with CT the bone masks obtained when using this information to segment the UTE datasets. RESULTS The results show the desired bony structures as a cluster pattern in the space of dual-echo measurements. The clusters obtained for the tissue classes are strongly overlapped, indicating that the MR data will not, regardless of the chosen space partition, be able to completely differentiate the bony and soft structures. The classification obtained by maximizing the posterior probability compared well to previously published methods, providing a more intuitive and robust choice of the final classification threshold. The distance between MR- and CT-based bone masks was 59% on average (0% being a perfect match), compared to 76% and 69% for two previously published methods. CONCLUSIONS The study of tri-modality datasets shows that improved bone tissue classification can be achieved by estimating maps of the posterior probability of voxels belonging to a particular tissue class, given a measured pair of UTE echoes.
منابع مشابه
MR-based PET Attenuation Correction for Neurological Studies Using Dual-Echo UTE Sequences
INTRODUCTION Due to the limited space available inside an MR scanner, most of the MR compatible PET inserts are not equipped with a transmission source, which makes the implementation and validation of an MR-based attenuation correction (AC) method necessary. The obvious challenge is that MR images are not typically directly related to tissue linear attenuation coefficients (LACs). Furthermore,...
متن کاملPET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
UNLABELLED Integrated PET/MR systems are becoming increasingly popular in clinical and research applications. Quantitative PET reconstruction requires correction for γ-photon attenuations using an attenuation coefficient map (μ map) that is a measure of the electron density. One challenge of PET/MR, in contrast to PET/CT, lies in the accurate computation of μ maps. Unlike CT, MR imaging measure...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملClinical evaluation of zero-echo-time MR imaging for the segmentation of the skull.
UNLABELLED MR-based attenuation correction is instrumental for integrated PET/MR imaging. It is generally achieved by segmenting MR images into a set of tissue classes with known attenuation properties (e.g., air, lung, bone, fat, soft tissue). Bone identification with MR imaging is, however, quite challenging, because of the low proton density and fast decay time of bone tissue. The clinical e...
متن کاملRegion specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR...
متن کامل